Title of Study (Authors)	Description of Study	Outcome	Level of Evidence
BTA neuromuscular blockade in the treatment of lower extremity spasticity. (Koman et al., 2000)	Randomized* double- • blind** trial in 114 children with CP and • spastic equinus Treatment = BTA or saline into calf	BTA group improved gait up to 12 weeks post injection No serious side effects were noted	I
Double blind study of BTA into the gastrocnemius muscle in patients with cerebral palsy. (Sutherland et al., 1999)	Randomized double blind trial of 20 children with cerebral palsy and • equinus Treatment = BTA or saline into the calf muscle(gastrocnemius)	Improvement in ankle movement on gait analysis No adverse events	I
Randomized double blind placebo controlled trial of the effect of BTA on walking in CP. (Ubhi et al., 2000)	Randomized double-blind trial in 40 children with CP, spastic diplegia or hemiplegia Treatment = BTA or saline into calf muscle	Improvement in walking found on Gross Motor Function Measure and on gait analysis in the BTA group	Ι
BTA versus fixed cast stretching for dynamic calf tightness in cerebral palsy. (Flett et al., 1999)	Randomized single blind study of 20 children with CP and equinus • Treatment = BTA into calf or serial casting	Both groups had similar improvements Parents favoured BTA over casting	Π
BTA compared with stretching • casts in the treatment of spastic equines. (Corry et al., 1998) •	Randomized trial of 20 • children with CP and equinus • Treatment = BTA into calf or serial casting	Both groups improved ankle motion during gait BTA group had longer lasting effects (12 weeks) and fewer side effects	Π
BTA neuromuscular blockade in the treatment of equinus foot deformity in cerebral palsy: a multi-center, open-label clinical trial. (Koman et al., 2001)	Prospective study evaluating long term safety and efficacy of repeated BTA injections• 155 of 207 children with spastic equinus completed at least one year	Improvements in gait were maintained in 41 to 58% of children at 2 years Adverse effects related to the treatment included stumbling, leg cramps, and calf atrophy One child had a serious adverse event with self- limited generalized weakness	IV

Table 1: Use of BTA for Management of Spastic Equinus (Toe-walking)

* Randomized = The participants in the study are assigned randomly to either the intervention group or the control group.

** Double-blind = A research design in which the participant and the person doing the assessment do not know if the participant is in the control group or the intervention group.

Table 2: Use of BTA in Other Leg Muscles

Title of Study (Authors)	Desrcription of Study	Outcome	Level of Evidence
Evaluation of botulinum • toxin A therapy in children with adductor spasm by Gross Motor Function • Measure. (Mall et al., 2000)	Prospective study of 18 • children with CP with adductor (hip muscle) spasm Treatment = BTA into adductor muscle (hip) and/or hamstring injection	Improvements in tone, range of motion, and GMFM scores	IV
Botulinum toxin A in hamstring spasticity. (Corry et al., 1999)	Prospective study of 10 • children with CP who had dynamic hamstring spasticity likely requiring orthopaedic surgery in the future Treatment = BTA in hamstrings muscles	Improvement in hamstring flexibility, knee extension during gait, and speed of walking	IV
Botulinum toxin in the management of the lower limb in cerebral palsy. (Cosgrove et al., 1994)	Propsective study of 26 • children with spastic CP with involvement in the lower extremity Treatment = BTA into calf • and/or hamstrings muscles	Decrease in muscle tone Inreased range of motion and flexibility at the ankle and/or knee Improved walking Increased knee extension during gait	IV
Treatment of cerebral palsy with botulinum toxin: evaluation with Gross Motor Function Measure. • (Yang et al., 1999)	Prospective study on 38 children with spastic CP in lower extremities Treatment = BTA into calf and/or hamstrings muscles	Improvements in tone and walking distance Improvements in gross motor function No difference in quality of gait	IV
BTA in the management of spastic gait disorders in children and young adults with CP: a randomized, double-blind study of "high- dose" vs. "low-dose" • treatment. (Wissel et al., 1999)	Randomized*, double • blind**, controlled study on 33 children with spastic diplegia or hemiplegia Treatment = Multilevel = • BTA into calf and a second level (hamstrings, hip adductor or hip flexor) using a high or low dose	Dose-development improvements in tone, active and passive range of motion at ankle, improved stride length and speed of walking Improvements in active and passive range of motion at knee found in both the high and low dose groups	I

* Randomized = The participants in the study are assigned randomly to either the

intervention group or the control group.

** Double-blind = A research design in which the participant and the person doing the assessment do not know if the participant is in the control group or the intervention group.

Title of Study (Authors)	Description of Study	Outcome	Level of Evidence
Botulinum toxin A in the • hemiplegic upper limb: a double-blind** trial. (Corry et al., 1997) •	Randomized*, double blind, controlled study of 14 children with hemiplegia • BTA into multiple spastic arm muscles	Improvement seen in range, tone, grasp, and cosmetic appearance Decreased ability to pick up coins	I (evidence for improvement in tone, range and cosmetic appearance but not function)
An evaluation of BTA to • improve upper extremity function in children with hemiplegia. • (Fehlings et al., 2000)	Randomized trial of• 30 children with hemiplegia BTA into multiple spastic arm muscles	Improvement found in function in the BTA group	I (evidence for improvement in upper extremity function)
Botulinum A chemodenervation: a new modality in cerebral palsied hands. (Wall et al., 1993)	Prospective study of 5 children with hemiplegia BTA into adductor pollicis muscle plus splinting	Improvement in the cosmetic appearance and function of the hand was seen in all 5 children (rated by a blinded panel)	IV
Botulinum toxin in the • treatment of cerebral palsy. (Denisilc & Meh, 1995) •	Prospective study of 10 children with CP BTA into multiple muscles in the arm	9 out of 10 children improved function/tone	IV
Effects of BTA on upper • limb spasticity in children with cerebral palsy. • (Friedman et al., 2000)	Prospective study of 32 children with CP BTA into multiple spastic arm muscles	Improvement seen in tone	IV (evidence for reduction in tone)
BTA as an adjunct when • planning hand surgery in children with spastic hemiplegia. • (Autti-Ramo et al., 2000)	Prospective study of 8 children with hemiplegia BTA into multiple spastic arm muscle	5 of the 8 children met treatment goals, with improvement in grasp and bimanual function	IV

Table 3: Use of BTA in the Upper Extremity

* Randomized = The participants in the study are assigned randomly to either the intervention group or the control group.

** Double-blind = A research design in which the participant and the person doing the assessment do not know if the participant is in the control group or the intervention group.

Title of Study (Authors)	Description of Study	Outcome	Level of Evidence
Botulinum toxin in • severe upper extremity spasticity among patients with traumatic brain injury: An open labeled trial. (Yablon et al., 1996 •	Prospective (before-after) study of 21 individuals with a traumatic brain injury and related upper extremity spasticity, aged 16-54 years (9 individuals were treated less than one year after the injury) Treatment = BTA into multiple muscles in the upper extremity and therapy including casting	Both groups (acute and chronic) had increased range at the wrist and decreased spasticity Decreased pain during range of motion, and improved positioning and hygiene	IV
Botulinum toxin type A in the treatment of upper limb spasticity among patients with traumatic brain injury. (Pavesi et al., 1998)	Prospective (before-after) study of 6 individuals with traumatic brain injury and related upper extremity spasticity, aged 18-42 years • Spasticity had been present for 4-6 months. Treatment = BTA into multiple muscles in the upper extremity plus casting	Increased range of motion and decreased spasticity were found Improvements in functional arm use were reported based on clinical evaluation Decreased pain	IV
Botulinum toxin treatment of lumbrical spasticity: A brief report. (Palmer et al., 1998)	Prospective study of a 19-year-old • male who had a traumatic brain injury and related wrist and hand • spasticity. He was two years post injury. • Treatment = BTA into the lumbrical muscles of the left hand (from the index to the little finger)	Decreased spasticity in the hand (lumbrical muscles) No change in hand function Hygiene more easily preformed on the left hand	IV
Kinematic changes following botulinum toxin injection after traumatic brain injury. (Wilson et al., 1997)	Prospective (single-subject) study of a 19-year-old male who had a traumatic brain injury and related lower extremity spasticity. The individual was two years post- injury. Treatment = BTA into calf muscle	Improvements seen in walking pattern - walking speed increased, and movement at the ankle and knee improved No difference in range of motion	IV

Table 4: Use of BTA with Individuals with Traumatic Brain Injury